Regulation of the voltage-insensitive step of HERG activation by extracellular pH.
نویسندگان
چکیده
Human ether-à-go-go-related gene (HERG, Kv11.1, KCNH2) voltage-gated K(+) channels dominate cardiac action potential repolarization. In addition, HERG channels play a role in neuronal and smooth cell excitability as well as cancer pathology. Extracellular pH (pH(o)) is modified during myocardial ischemia, inflammation, and respiratory alkalosis, so understanding the response of HERG channels to changes in pH is of clinical significance. The relationship between pH(o) and HERG channel gating appears complex. Acidification has previously been reported to speed, slow, or have no effect on activation. We therefore undertook comprehensive analysis of the effect of pH(o) on HERG channel activation. HERG channels have unique and complex activation gating characteristics with both voltage-sensitive and voltage-insensitive steps in the activation pathway. Acidosis decreased the activation rate, suppressed peak current, and altered the sigmoidicity of gating near threshold potentials. At positive voltages, where the voltage-insensitive transition is rate limiting, pH(o) modified the voltage-insensitive step with a pK(a) similar to that of histidine. Hill coefficient analysis was incompatible with a coefficient of 1 but was well described by a Hill coefficient of 4. We derived a pH(o)-sensitive term for a five-state Markov model of HERG channel gating. This model demonstrates the mechanism of pH(o) sensitivity in HERG channel activation. Our experimental data and mathematical model demonstrate that the pH(o) sensitivity of HERG channel activation is dominated by the pH(o) sensitivity of the voltage-insensitive step, in a fashion that is compatible with the presence of at least one proton-binding site on each subunit of the channel tetramer.
منابع مشابه
Mechanism for the effects of extracellular acidification on HERG-channel function.
Human ether-à-go-go-related gene ( HERG) encodes a K channel similar to the rapid delayed rectifier channel current ( I Kr) in cardiac myocytes. Modulation of I Kr by extracellular acidosis under pathological conditions may impact on cardiac electrical activity. Therefore, we studied the effects of extracellular acidification on I Kr function and the underlying mechanism, using HERGexpressed in...
متن کاملUse-dependent 'agonist' effect of azimilide on the HERG channel.
Azimilide (AZ) is a class III antiarrhythmic drug that has voltage-dependent dual effects on the HERG channel: 1) increasing current amplitude at low-voltage depolarization (agonist effect), and 2) suppressing current at more depolarized voltages (antagonist effect). We examined the mechanism for the agonist effect of AZ on HERG expressed in Xenopus oocytes. The agonist effect resulted from an ...
متن کاملExtracellular Sodium Interacts with the HERG Channel at an Outer Pore Site
Most voltage-gated K(+) currents are relatively insensitive to extracellular Na(+) (Na(+)(o)), but Na(+)(o) potently inhibits outward human ether-a-go-go-related gene (HERG)-encoded K(+) channel current (Numaguchi, H., J.P. Johnson, Jr., C.I. Petersen, and J.R. Balser. 2000. Nat. Neurosci. 3:429-30). We studied wild-type (WT) and mutant HERG currents and used two strategic probes, intracellular...
متن کاملProton block of the pore underlies the inhibition of hERG cardiac K+ channels during acidosis.
Human ether-a-go-go-related gene (hERG) potassium channels are critical determinants of cardiac repolarization. Loss of function of hERG channels is associated with Long QT Syndrome, arrhythmia, and sudden death. Acidosis occurring as a result of myocardial ischemia inhibits hERG channel function and may cause a predisposition to arrhythmias. Acidic pH inhibits hERG channel maximal conductance ...
متن کاملModulation of hERG potassium currents in HEK-293 cells by protein kinase C. Evidence for direct phosphorylation of pore forming subunits.
The human ether-a-go-go related gene (hERG) potassium channel is expressed in a variety of tissues including the heart, neurons and some cancer cells. hERG channels are modulated by several intracellular signalling pathways and these provide important mechanisms for regulating cellular excitability. In this study, we investigated muscarinic modulation of hERG currents and direct phosphorylation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 298 6 شماره
صفحات -
تاریخ انتشار 2010